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Executive Summary 

The recent collapse of the I-35W Mississippi River Bridge in Minneapolis has spawned a growing 
interest in the development of reliable techniques for evaluating the structural integrity of civil 
infrastructure. Current inspection techniques tailored to vehicular bridges in particular are widely 
based on short-term or intermittent monitoring schedules. While these techniques have had 
reasonable success in assessing the structural integrity of bridges, there are unanswered questions 
about their effectiveness for monitoring sudden adverse structural changes that can lead to 
catastrophic bridge failure. Structural health monitoring (SHM) is an alternative inspection paradigm 
that provides the potential for long-term monitoring of integrity of large-scale structures.  
 
The goal of this work is to develop an intelligent structural health monitoring (ISHM) scheme for the 
long-term assessment of the damage state of in-service vehicular bridges. The presented ISHM 
scheme builds upon an existing SHM scheme developed at the Center for Quality Engineering and 
Failure Prevention (CQEFP) at Northwestern University for the evaluation of the structural integrity of 
safety critical infrastructures. The ISHM scheme consists of diagnostic optical fiber Bragg grating 
(FBG) sensors for acoustic emission monitoring, signal processing techniques for source localization 
of acoustic emission events, and model based prediction of structural damage using the measured 
sensor information. Acoustic emissions consist of dynamic elastic stress waves produced by the 
sudden release of mechanical energy in a material, and their generation is well correlated with the 
growth of cracks in a structure produced by stress corrosion or mechanical fatigue from cyclic loading. 
As such, acoustic emission events serve as warning signs for the initiation of the process of structural 
failure.  
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CHAPTER 1 – FIBER BRAGG 
GRATINGS IN ACOUSTIC EMISSION 
MONITORING  
 
The catastrophic collapse of the Interstate 35W Mississippi River Bridge, also known as Bridge 9340, 
in 2007 brought nationwide attention to the current condition of U.S. highway infrastructure. Bridge 
9340 had been inspected annually since 1993 by the Minnesota DOT and numerous reports were 
written indicating its structural deficiency.  Although warnings had been given and remedial actions 
were planned, nothing predicted its untimely failure.  The investigation led by the National 
Transportation Safety Board (NTSB) attributed the failure of bridge 9340 to a combination of under 
designed gusset plates, excessive loading from construction equipment on the bridge, and inefficient 
corrosion control [1]. 
 
In a December 2008 U.S. Department of Transportation (DOT) report, it is stated that of all accounted 
highway bridges in the US, 25% (151,000) of them are structurally deficient or functionally obsolete.  
Given past occurrences, current schdedule based inspections alone are not 100% effective in 
determining the condition of aging structures.  The addition of a real-time intelligent structural health 
management (ISHM) system to a structure can significantly increase safety margins by keeping the 
owner informed as to the structures current health state.  

Acoustic Emission 

Acoustic emission (AE) sensors were used in this work for local monitoring of damage evolution in 
vehicular bridges. AE based inspection techniques have widespread application in the monitoring of 
cracks and defects in structural materials [2-5].  Acoustic emissions are transient elastic stress waves 
produced by the sudden release of mechanical energy due to the growth and propagation of cracks in 
a structure, and are associated with mechanical fatigue loading or stress corrosion. Ultimately, the 
crack weakens the structure, thus providing a pathway for failure initiation as crack growth persists. 
 
Current AE monitoring systems use piezoelectric sensors to “listen” to the structure.  These sensors 
are costly as each of them requires a preamplifier.  The sensors are highly susceptible to 
electromagnetic interference, have a limited operating frequency range, and require periodic 
calibration as aging causes a decrease in sensitivity. 
 
The AE system developed in this work utilizes optical fiber Bragg gratings (FBG) in place of 
piezoelectric sensors.  FBG sensors offer numerous advantages compared to piezoelectric sensors 
for AE monitoring. FBG sensors are low cost and readily available, light-weight, immune to 
electromagnetic noise sources, and are readily multiplexable.  It is possible to set up a FBG array at 
great distances from the control box with minimal signal loss because the FBG are connected to the 
control box by fiber optic and not a cable.  Having a significantly smaller footprint than the piezoelectric 
sensors, the FBG can also be mounted in areas with small tolerances.  Since they are small, the FBG 
can be installed permanently to the structure and its fiber runs to each sensor can be concealed 
easily.  This will allow for the inspector to leave the sensor in place to do real-time structural health 
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monitoring (SHM) of the structure or to leave the sensors in place and simply hook up the 
demodulator box when a scheduled inspection is required. With this sensing approach, inspectors are 
not required to set up local sensors, apply coupling fluids for ultrasound transmission, and recalibrate 
the sensors prior to each use, all of which are necessary for the commonly used piezoelectric SHM 
sensors.   Furthermore, FBG sensors exhibit long-term stability and optical sensitivity, which is suitable 
for SHM applications.  

Fiber Bragg Grating Sensors 

FBGs are excellent sensors for detecting AE, and are particularly well suited for long-term SHM 
applications in safety critical infrastructures [6-8]. The FBG sensor response to an AE event is 
spectrally encoded in the optical probe, thus providing immunity to noise sources from optical intensity 
fluctuation and electromagnetic interference. The gauge length of these sensors is small, and multiple 
sensor elements can be serially multiplexed in a single optical fiber for localized multi-point AE 
detection without incurring the burden of running massive optical fiber leads through a structure. The 
sensor can be surface mounted or embedded in a structure, providing a versatile inspection tool. 
Furthermore, the transmission and reception of optical signals through the sensors can be made over 
kilometer range distances, thus making FBGs ideal candidates for SHM of large-scale structures.  
 
A fiber Bragg grating in its simplest form consists of an optical fiber with a periodic modulation of the 
index of refraction in the gauge section of the fiber core as illustrated in figure 1-1, and acts as a 
wavelength selective mirror based on the Bragg grating resonance condition. In practice, an FBG 
sensor is interrogated by directing a broadband laser source through the optical fiber. A portion of the 
input light within a narrow spectral bandwidth is reflected by the Bragg grating, while the remainder of  

Figure 1-1. A schematic illustration of an optical fiber Bragg grating sensor 

the light spectra is transmitted through the optical fiber.  The center wavelength λ0 of the reflected light 
depends on the effective index of refraction (neff) of the fiber core, and the period (Λ) of the index of 
refraction grating in the gauge section, according to the Bragg resonance condition: 

0 2 .effnλ = Λ                                                             (1) 

A FBG sensor responds to mechanical or thermal strains imposed by the environment, by a 
modulation in the phase of the light. Specifically, the center wavelength of the FBG changes as  neff 
and Λ are perturbed by the imposed external strain. The functional relationship of the FBG spectral 
shift to these parameters is: 

Fiber Core CladdingIndex Grating

Input
Spectrum

Reflection

Transmission
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such, the system can be thought of as losing memory of the slow changes in sensor wavelength λΔ . 
Consequently, the PRC interferometer allows for dynamic sensor wavelength changes to be 
selectively demodulated in the presence of low frequency sensor responses arising from heating 
effects or large quasi-static deformation. The response time of the PRC demodulator is 1 ms, and 
sensor responses in the range of 1 kHz and above can be readily demodulated. The upper threshold 
on the frequency response is limited by the bandwidth of the optical detector and coupling electronics. 
At the moment, the limit is in the range of 10 MHz.      
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CHAPTER 2- TWO-WAVE MIXING 
(TWM) INTERFEROMETRIC 
DEMODULATOR PROTOTYPE DESIGN 
 
The compact and adaptive interferometric wavelength demodulator is designed and assembled using 
compact microbench components and free space optical components. The demodulator has the 
ability to compensate for quasi-static drifts without the need for active stabilization. It is suitable for 
measuring dynamic and transient strain from impact events, vibration, and acoustic emissions. It can 
also be functionalized with wavelength division multiplexing for multi-channel detection. A schematic of 
TWM is illustrated in figure 2-1, with an optical table design (a) of the TWM and a portable design (b) 
with the mounting of the crystal expanded above.  The high voltage electric field is applied to the PRC 
using the two elecrrodes mounted on opposite sides of the holding fixture.  This optical setup is 
integrated into a small format consisting of 4 tiers: optics, power supply and electronics, a level for 
each of the EDFAs, with the optics level shown in figure 2-2 (a) with the optical level shown in (b).  A 
semiconducting thermistor is used in temperature monitoring for photorefractive crystal and exhibits a 
nonlinear behavior in its conversion from resistance to temperature, which is plotted in figure 2-3 (a). It 
is selected in order to avoid electrical conductance when reading the themistor output when a high 
voltage field is applied across the crystal.  To linearize the behavior of the semiconductor, an electrical 
circuit figure 2-3 is designed to analogically represent Steinhart-Hart equation: 

   [ ] 13))(ln()ln(
−

++= RCRBAT     (14) 

where A, B, and C are the Steinhart-Hart coefficients, depending upon the type and model of the 
thermistor and driving current used and the temperature range of interest. R is the resistance at 
specified temperature in ohms. T is the temperature in Kelvin. Converting thermistor resistance to a 
temperature value is necessary to develop a PID controlled temperature controller.  Figure 2-1 (b) 
illustrates that the thermistor is used to determine the temperature in the crystal. Using the analog 
circuit, resistance in the thermistor is converted to temperature, which is then compared to the set 
temperature. A summing amplifier is used to determine the difference between the set temperature 
and the thermistor output. Then, using a PID controller, TEC current output is adjusted to maintain the 
crystal temperature at the set temperature.   The whole system is packaged in a robust (22”x17”x9”) 
aluminum chassis that can be rack mounted (figure 2-4). 
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CHAPTER 4- CONCLUSION 
 
 
The objectives of this project are to develop a rugged construction of the two-wave mixing FBG 
demodulation system developed by the PI’s group, and to conduct pilot field tests on acoustic 
emission diagnostics of local damage in vehicular bridge components using FBG sensors. This project 
is motivated by the unique capabilities provided by the demodulation system, namely, low cost 
demodulation approach, multiplexed demodulation of multiple sensor responses, adaptivity to low 
frequency noise from thermal drifts and large quasi-static deformation, high mechanical strain 
amplitude sensivity, and high frequency (~ a few hundred kilohertz) response of the demodulator.  
Prior to the commencement of this project, a basic proof of concept of the demodulation scheme was 
demonstrated by the PI on a laboratory breadboard. The system described  in this report was 
fabricated in a compact form using microbench components and a free space optics currently housed 
in a rack mounted enclosure that is suitable for field testing applications.  A set of pilot field tests were 
conducted in collaboration with research partners at the Hong Kong Polytechnic University in Hong 
Kong, and the Dalian University of Technology in China. These tests involved the monitoring of crack 
initiation and propagation in the carbon fiber reinforced composite test coupons loaded in uni-axial 
tension and with cylic loads through to complete specimen fracture. The data allowed for delineation 
of various instrinsic microstructual damage modes including matrix rubbing and damage in the test 
coupons.   In the case of the unitaxial tension tests, the results obtained from the FBG sensor 
indicates a clear delineation between the loading regimes of the specimen. Also, the cyclic loading 
data are well correlated with the loading history of the test coupons. The results obtained demonstrate 
the high sensitivity of FBG sensors to local damage evolution in component parts. At present, we are 
investigating potential field testing of local damage in a vehicular bridge at sites within the US.
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List of Acronyms 

 
 

AE Acoustic Emissions 

CFRP Carbon Fiber Reinforced Polymer 

CQEFP Center for Quality Engineering and Failure Prevention 

DOT Department of Transportation 

EDFA Erbium Doped Fiber Amplifier 

FRP Fiber Reinforced Plastic 

GFRP Glass Fiber Reinforced Polymer 

ISHM Intelligent Structural Health Managment 

PRC Photorefractive Crystal 

SHM Structural Health Monitoring 

TWM Two Wave Mixing 
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